Curves and surfaces represented by polynomial support functions

نویسندگان

  • Zbynek Sír
  • Jens Gravesen
  • Bert Jüttler
چکیده

This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximation of general curves and surfaces by them. Based on the rich theory of spherical spline functions, this leads to computational techniques for rational curves and surfaces with rational offsets, which can deal with shapes without inflections/parabolic points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

Bezier curves based on Lupas (p, q)-analogue of Bernstein polynomials in CAGD

In this paper, we use the blending functions of Lupaş type (rational) (p, q)-Bernstein operators based on (p, q)-integers for construction of Lupaş (p, q)-Bézier curves (rational curves) and surfaces (rational surfaces) with shape parameters. We study the nature of degree elevation and degree reduction for Lupaş (p, q)-Bézier Bernstein functions. Parametric curves are represented using Lupaş (p...

متن کامل

Exact envelope computation for moving surfaces with quadratic support functions

We consider surfaces whose support function is obtained by restricting a quadratic polynomial to the unit sphere. If such a surface is subject to a rigid body motion, then the Gauss image of the characteristic curves is shown to be a spherical quartic curve, making them accessible to exact geometric computation. In particular we analyze the case of moving surfaces of revolution.

متن کامل

A Class of Quasi-Quartic Trigonometric BÉZier Curves and Surfaces

A new kind of quasi-quartic trigonometric polynomial base functions with a shape parameter λ over the space Ω=span {1, sint, cost, sint2t, cos2t} is presented, and the corresponding quasi-quartic trigonometric Bézier curves and surfaces are defined by the introduced base functions. The quasi-quartic trigonometric Bézier curves inherit most of properties similar to those of quartic Bézier curves...

متن کامل

Variational design of rational Bezier curves and surfaces

The design of curves and surfaces in C.A.D. systems has many applications in car, plane or ship industry. Because they offer more flexibility, rational functions are often prefered to polynomial functions to modelize curves and surfaces. In this work, several methods to generate rational Bezier curves and surfaces which minimize some functionals are proposed. The functionals measure a technical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 392  شماره 

صفحات  -

تاریخ انتشار 2008